3.9.68 \(\int \csc ^3(c+d x) \sec ^5(c+d x) (a+a \sin (c+d x))^2 \, dx\) [868]

3.9.68.1 Optimal result
3.9.68.2 Mathematica [A] (verified)
3.9.68.3 Rubi [A] (verified)
3.9.68.4 Maple [A] (verified)
3.9.68.5 Fricas [B] (verification not implemented)
3.9.68.6 Sympy [F(-1)]
3.9.68.7 Maxima [A] (verification not implemented)
3.9.68.8 Giac [A] (verification not implemented)
3.9.68.9 Mupad [B] (verification not implemented)

3.9.68.1 Optimal result

Integrand size = 29, antiderivative size = 134 \[ \int \csc ^3(c+d x) \sec ^5(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {2 a^2 \csc (c+d x)}{d}-\frac {a^2 \csc ^2(c+d x)}{2 d}-\frac {31 a^2 \log (1-\sin (c+d x))}{8 d}+\frac {4 a^2 \log (\sin (c+d x))}{d}-\frac {a^2 \log (1+\sin (c+d x))}{8 d}+\frac {a^4}{4 d (a-a \sin (c+d x))^2}+\frac {7 a^3}{4 d (a-a \sin (c+d x))} \]

output
-2*a^2*csc(d*x+c)/d-1/2*a^2*csc(d*x+c)^2/d-31/8*a^2*ln(1-sin(d*x+c))/d+4*a 
^2*ln(sin(d*x+c))/d-1/8*a^2*ln(1+sin(d*x+c))/d+1/4*a^4/d/(a-a*sin(d*x+c))^ 
2+7/4*a^3/d/(a-a*sin(d*x+c))
 
3.9.68.2 Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.63 \[ \int \csc ^3(c+d x) \sec ^5(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {a^2 \left (16 \csc (c+d x)+4 \csc ^2(c+d x)+31 \log (1-\sin (c+d x))-32 \log (\sin (c+d x))+\log (1+\sin (c+d x))-\frac {2}{(-1+\sin (c+d x))^2}+\frac {14}{-1+\sin (c+d x)}\right )}{8 d} \]

input
Integrate[Csc[c + d*x]^3*Sec[c + d*x]^5*(a + a*Sin[c + d*x])^2,x]
 
output
-1/8*(a^2*(16*Csc[c + d*x] + 4*Csc[c + d*x]^2 + 31*Log[1 - Sin[c + d*x]] - 
 32*Log[Sin[c + d*x]] + Log[1 + Sin[c + d*x]] - 2/(-1 + Sin[c + d*x])^2 + 
14/(-1 + Sin[c + d*x])))/d
 
3.9.68.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.93, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {3042, 3315, 27, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^3(c+d x) \sec ^5(c+d x) (a \sin (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (c+d x)+a)^2}{\sin (c+d x)^3 \cos (c+d x)^5}dx\)

\(\Big \downarrow \) 3315

\(\displaystyle \frac {a^5 \int \frac {\csc ^3(c+d x)}{(a-a \sin (c+d x))^3 (\sin (c+d x) a+a)}d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^8 \int \frac {\csc ^3(c+d x)}{a^3 (a-a \sin (c+d x))^3 (\sin (c+d x) a+a)}d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 99

\(\displaystyle \frac {a^8 \int \left (\frac {\csc ^3(c+d x)}{a^7}+\frac {2 \csc ^2(c+d x)}{a^7}+\frac {4 \csc (c+d x)}{a^7}+\frac {31}{8 a^6 (a-a \sin (c+d x))}-\frac {1}{8 a^6 (\sin (c+d x) a+a)}+\frac {7}{4 a^5 (a-a \sin (c+d x))^2}+\frac {1}{2 a^4 (a-a \sin (c+d x))^3}\right )d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a^8 \left (-\frac {\csc ^2(c+d x)}{2 a^6}-\frac {2 \csc (c+d x)}{a^6}+\frac {4 \log (a \sin (c+d x))}{a^6}-\frac {31 \log (a-a \sin (c+d x))}{8 a^6}-\frac {\log (a \sin (c+d x)+a)}{8 a^6}+\frac {7}{4 a^5 (a-a \sin (c+d x))}+\frac {1}{4 a^4 (a-a \sin (c+d x))^2}\right )}{d}\)

input
Int[Csc[c + d*x]^3*Sec[c + d*x]^5*(a + a*Sin[c + d*x])^2,x]
 
output
(a^8*((-2*Csc[c + d*x])/a^6 - Csc[c + d*x]^2/(2*a^6) + (4*Log[a*Sin[c + d* 
x]])/a^6 - (31*Log[a - a*Sin[c + d*x]])/(8*a^6) - Log[a + a*Sin[c + d*x]]/ 
(8*a^6) + 1/(4*a^4*(a - a*Sin[c + d*x])^2) + 7/(4*a^5*(a - a*Sin[c + d*x]) 
)))/d
 

3.9.68.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3315
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x)^n, 
 x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && Intege 
rQ[(p - 1)/2] && EqQ[a^2 - b^2, 0]
 
3.9.68.4 Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.24

method result size
derivativedivides \(\frac {a^{2} \left (\frac {1}{4 \cos \left (d x +c \right )^{4}}+\frac {1}{2 \cos \left (d x +c \right )^{2}}+\ln \left (\tan \left (d x +c \right )\right )\right )+2 a^{2} \left (\frac {1}{4 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{4}}+\frac {5}{8 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}}-\frac {15}{8 \sin \left (d x +c \right )}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a^{2} \left (\frac {1}{4 \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{4}}+\frac {3}{4 \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{2}}-\frac {3}{2 \sin \left (d x +c \right )^{2}}+3 \ln \left (\tan \left (d x +c \right )\right )\right )}{d}\) \(166\)
default \(\frac {a^{2} \left (\frac {1}{4 \cos \left (d x +c \right )^{4}}+\frac {1}{2 \cos \left (d x +c \right )^{2}}+\ln \left (\tan \left (d x +c \right )\right )\right )+2 a^{2} \left (\frac {1}{4 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{4}}+\frac {5}{8 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}}-\frac {15}{8 \sin \left (d x +c \right )}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a^{2} \left (\frac {1}{4 \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{4}}+\frac {3}{4 \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{2}}-\frac {3}{2 \sin \left (d x +c \right )^{2}}+3 \ln \left (\tan \left (d x +c \right )\right )\right )}{d}\) \(166\)
risch \(-\frac {i \left (-44 i a^{2} {\mathrm e}^{6 i \left (d x +c \right )}+15 a^{2} {\mathrm e}^{7 i \left (d x +c \right )}+72 i a^{2} {\mathrm e}^{4 i \left (d x +c \right )}-61 a^{2} {\mathrm e}^{5 i \left (d x +c \right )}-44 i a^{2} {\mathrm e}^{2 i \left (d x +c \right )}+61 a^{2} {\mathrm e}^{3 i \left (d x +c \right )}-15 a^{2} {\mathrm e}^{i \left (d x +c \right )}\right )}{2 \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{4} d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{4 d}-\frac {31 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{4 d}+\frac {4 a^{2} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d}\) \(199\)
parallelrisch \(\frac {\left (\left (-31 \cos \left (2 d x +2 c \right )-124 \sin \left (d x +c \right )+93\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (3-\cos \left (2 d x +2 c \right )-4 \sin \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (16 \cos \left (2 d x +2 c \right )+64 \sin \left (d x +c \right )-48\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-80 \cos \left (d x +c \right )+20 \cos \left (2 d x +2 c \right )+64\right ) \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (50 \cos \left (d x +c \right )-50\right ) \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (\left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-4\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sec \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2}}{4 d \left (\cos \left (2 d x +2 c \right )-3+4 \sin \left (d x +c \right )\right )}\) \(229\)

input
int(csc(d*x+c)^3*sec(d*x+c)^5*(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/d*(a^2*(1/4/cos(d*x+c)^4+1/2/cos(d*x+c)^2+ln(tan(d*x+c)))+2*a^2*(1/4/sin 
(d*x+c)/cos(d*x+c)^4+5/8/sin(d*x+c)/cos(d*x+c)^2-15/8/sin(d*x+c)+15/8*ln(s 
ec(d*x+c)+tan(d*x+c)))+a^2*(1/4/sin(d*x+c)^2/cos(d*x+c)^4+3/4/sin(d*x+c)^2 
/cos(d*x+c)^2-3/2/sin(d*x+c)^2+3*ln(tan(d*x+c))))
 
3.9.68.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 302 vs. \(2 (126) = 252\).

Time = 0.29 (sec) , antiderivative size = 302, normalized size of antiderivative = 2.25 \[ \int \csc ^3(c+d x) \sec ^5(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {44 \, a^{2} \cos \left (d x + c\right )^{2} - 40 \, a^{2} - 32 \, {\left (a^{2} \cos \left (d x + c\right )^{4} - 3 \, a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} + 2 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \sin \left (d x + c\right )\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) + {\left (a^{2} \cos \left (d x + c\right )^{4} - 3 \, a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} + 2 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \sin \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + 31 \, {\left (a^{2} \cos \left (d x + c\right )^{4} - 3 \, a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} + 2 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \sin \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (15 \, a^{2} \cos \left (d x + c\right )^{2} - 19 \, a^{2}\right )} \sin \left (d x + c\right )}{8 \, {\left (d \cos \left (d x + c\right )^{4} - 3 \, d \cos \left (d x + c\right )^{2} + 2 \, {\left (d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right ) + 2 \, d\right )}} \]

input
integrate(csc(d*x+c)^3*sec(d*x+c)^5*(a+a*sin(d*x+c))^2,x, algorithm="frica 
s")
 
output
-1/8*(44*a^2*cos(d*x + c)^2 - 40*a^2 - 32*(a^2*cos(d*x + c)^4 - 3*a^2*cos( 
d*x + c)^2 + 2*a^2 + 2*(a^2*cos(d*x + c)^2 - a^2)*sin(d*x + c))*log(1/2*si 
n(d*x + c)) + (a^2*cos(d*x + c)^4 - 3*a^2*cos(d*x + c)^2 + 2*a^2 + 2*(a^2* 
cos(d*x + c)^2 - a^2)*sin(d*x + c))*log(sin(d*x + c) + 1) + 31*(a^2*cos(d* 
x + c)^4 - 3*a^2*cos(d*x + c)^2 + 2*a^2 + 2*(a^2*cos(d*x + c)^2 - a^2)*sin 
(d*x + c))*log(-sin(d*x + c) + 1) - 2*(15*a^2*cos(d*x + c)^2 - 19*a^2)*sin 
(d*x + c))/(d*cos(d*x + c)^4 - 3*d*cos(d*x + c)^2 + 2*(d*cos(d*x + c)^2 - 
d)*sin(d*x + c) + 2*d)
 
3.9.68.6 Sympy [F(-1)]

Timed out. \[ \int \csc ^3(c+d x) \sec ^5(c+d x) (a+a \sin (c+d x))^2 \, dx=\text {Timed out} \]

input
integrate(csc(d*x+c)**3*sec(d*x+c)**5*(a+a*sin(d*x+c))**2,x)
 
output
Timed out
 
3.9.68.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.89 \[ \int \csc ^3(c+d x) \sec ^5(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {a^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) + 31 \, a^{2} \log \left (\sin \left (d x + c\right ) - 1\right ) - 32 \, a^{2} \log \left (\sin \left (d x + c\right )\right ) + \frac {2 \, {\left (15 \, a^{2} \sin \left (d x + c\right )^{3} - 22 \, a^{2} \sin \left (d x + c\right )^{2} + 4 \, a^{2} \sin \left (d x + c\right ) + 2 \, a^{2}\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{3} + \sin \left (d x + c\right )^{2}}}{8 \, d} \]

input
integrate(csc(d*x+c)^3*sec(d*x+c)^5*(a+a*sin(d*x+c))^2,x, algorithm="maxim 
a")
 
output
-1/8*(a^2*log(sin(d*x + c) + 1) + 31*a^2*log(sin(d*x + c) - 1) - 32*a^2*lo 
g(sin(d*x + c)) + 2*(15*a^2*sin(d*x + c)^3 - 22*a^2*sin(d*x + c)^2 + 4*a^2 
*sin(d*x + c) + 2*a^2)/(sin(d*x + c)^4 - 2*sin(d*x + c)^3 + sin(d*x + c)^2 
))/d
 
3.9.68.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.93 \[ \int \csc ^3(c+d x) \sec ^5(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {4 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) + 124 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) - 128 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) + \frac {3 \, a^{2} \sin \left (d x + c\right )^{4} + 114 \, a^{2} \sin \left (d x + c\right )^{3} - 173 \, a^{2} \sin \left (d x + c\right )^{2} + 32 \, a^{2} \sin \left (d x + c\right ) + 16 \, a^{2}}{{\left (\sin \left (d x + c\right )^{2} - \sin \left (d x + c\right )\right )}^{2}}}{32 \, d} \]

input
integrate(csc(d*x+c)^3*sec(d*x+c)^5*(a+a*sin(d*x+c))^2,x, algorithm="giac" 
)
 
output
-1/32*(4*a^2*log(abs(sin(d*x + c) + 1)) + 124*a^2*log(abs(sin(d*x + c) - 1 
)) - 128*a^2*log(abs(sin(d*x + c))) + (3*a^2*sin(d*x + c)^4 + 114*a^2*sin( 
d*x + c)^3 - 173*a^2*sin(d*x + c)^2 + 32*a^2*sin(d*x + c) + 16*a^2)/(sin(d 
*x + c)^2 - sin(d*x + c))^2)/d
 
3.9.68.9 Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.94 \[ \int \csc ^3(c+d x) \sec ^5(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {4\,a^2\,\ln \left (\sin \left (c+d\,x\right )\right )}{d}-\frac {a^2\,\ln \left (\sin \left (c+d\,x\right )+1\right )}{8\,d}-\frac {\frac {15\,a^2\,{\sin \left (c+d\,x\right )}^3}{4}-\frac {11\,a^2\,{\sin \left (c+d\,x\right )}^2}{2}+a^2\,\sin \left (c+d\,x\right )+\frac {a^2}{2}}{d\,\left ({\sin \left (c+d\,x\right )}^4-2\,{\sin \left (c+d\,x\right )}^3+{\sin \left (c+d\,x\right )}^2\right )}-\frac {31\,a^2\,\ln \left (\sin \left (c+d\,x\right )-1\right )}{8\,d} \]

input
int((a + a*sin(c + d*x))^2/(cos(c + d*x)^5*sin(c + d*x)^3),x)
 
output
(4*a^2*log(sin(c + d*x)))/d - (a^2*log(sin(c + d*x) + 1))/(8*d) - (a^2*sin 
(c + d*x) + a^2/2 - (11*a^2*sin(c + d*x)^2)/2 + (15*a^2*sin(c + d*x)^3)/4) 
/(d*(sin(c + d*x)^2 - 2*sin(c + d*x)^3 + sin(c + d*x)^4)) - (31*a^2*log(si 
n(c + d*x) - 1))/(8*d)